5 research outputs found

    Examination tools for the endoscopic evaluation of the laryngeal adductor reflex

    Get PDF
    Der gesunde, menschliche Kehlkopf schĂŒtzt die tieferen Atemwege durch reflexhafte Mechanismen vor dem Eindringen von Partikeln, der sogenannten Aspiration. Einer dieser Mechanismen ist der laryngeale Adduktionsreflex (LAR), der eine rasche ZusammenfĂŒhrung der Stimmlippen bewirkt. Störungen des LAR können zu einer erhöhten Aspirationswahrscheinlichkeit fĂŒhren – ein Risikofaktor fĂŒr eine potentiell lebensbedrohliche LungenentzĂŒndung. Ein Routinescreening des LAR bei Verdacht auf einen pathologischen Reflexablauf ist daher medizinisch sinnvoll. Bisherige LAR-Evaluationsverfahren beruhen jedoch auf invasiven, nutzerabhĂ€ngigen und/oder ungezielten Methoden. Die Reflexperformance wird bislang zudem hauptsĂ€chlich qualitativ bewertet. Zur Reduktion der genannten Nachteile wurde an der Medizinischen Hochschule Hannover ein alternatives Verfahren entwickelt und initial erprobt. Dieser Microdroplet Impulse Testing of the LAR (MIT-LAR) genannte Ansatz beruht auf dem Beschuss der Larynxschleimhaut mit einem Tröpfchen. Durch Nutzung eines Hochgeschwindigkeitslaryngoskopsystems und manuelle Auswertung der gewonnenen Bildsequenzen konnte die LAR-Latenz bei Testpersonen mit hoher zeitlicher Auflösung gemessen werden. Obgleich dieses MIT-LAR-System einen Fortschritt gegenĂŒber vorherigen Verfahren darstellt, weist es hinsichtlich der Reproduzierbarkeit der LAR-Auslösung sowie hinsichtlich der ObjektivitĂ€t der optischen LAR-Analyse weiteres Optimierungspotential auf. Sowohl die tropfenvermittelte Stimulation als auch die optische Analyse des LAR werden in der vorliegenden, interdisziplinĂ€ren Arbeit adressiert: Ein neuartiger Tropfenapplikator ermöglicht die Bildung eines stabilen Stimulationströpfchens mit variabler MĂŒndungsenergie. Eine histologische Analyse des LĂ€sionspotentials an Schweinekehlköpfen ergibt keinen Hinweis auf GewebeschĂ€den. Zwei stereoskopische Hochgeschwindigkeitslaryngoskope werden konzipiert und aufgebaut. In Kombination mit dem Tropfenapplikator und einem Algorithmus zur Approximation der Tropfenflugbahn ermöglichen diese die Vorhersage des Tropfenaufprallortes. Bei Verwendung eines stablinsen- bzw. bildleiterbasierten Systems werden im Labor Vorhersagefehler von (0,9 ± 0,6) mm bzw. (1,3 ± 0,8) mm gemessen. Abschließend wird ein Verfahren zur automatisierten Analyse von MIT-LAR-Sequenzen entwickelt und an einem Datensatz erprobt. Dies fĂŒhrt zur erstmaligen, computergestĂŒtzten Messung der Stimmlippen-Winkelgeschwindigkeit wĂ€hrend der Adduktionsphase des menschlichen LAR. Im Fall einer vollstĂ€ndigen bzw.~unvollstĂ€ndigen Adduktion werden Werte von (891 ± 516) °/s bzw. (421 ± 221) °/s erhalten. Dies stellt eine Erweiterung des medizinischen Wissensstandes dar.Several reflexive mechanisms in the human larynx protect the deeper respiratory tract from the intrusion of foreign particles, the so-called aspiration. The laryngeal adductor reflex (LAR), which leads to a rapid closure of the glottis, is one of these mechanisms. In consequence, disturbances of the LAR can lead to aspiration – a risk factor for potentially fatal pneumonia. Therefore, a routine screening of the LAR is highly beneficial in cases where a pathological reflex phenotype is suspected. Current LAR evaluation approaches rely on invasive, user-dependent, and/or untargeted methods. Moreover, the reflex performance is currently mainly being assessed qualitatively. To mitigate these disadvantages, an alternative method has recently been developed and initially tested at Hannover Medical School. This method, referred to as Microdroplet Impulse Testing of the LAR (MIT-LAR), is based on impacting the laryngeal mucosa with a droplet. By using a high-speed laryngoscope, combined with a manual analysis of the recorded high-speed sequence showing the reflexive response, the LAR onset latency could be measured at a high temporal resolution. Although the MIT-LAR system represents a technological progress with respect to prior methods, it still offers further potential for development regarding the reproducibility of LAR stimulation and the objectivity of LAR evaluation. Both droplet-based LAR stimulation and optical LAR analysis are in the focus of the present, interdisciplinary work: A novel droplet applicator module enables stabilization of droplet formation and droplet muzzle energy control. A histological analysis of the droplet’s lesion potential on porcine larynges does not yield any sign of tissue damage. Two stereoscopic high-speed laryngoscopes are designed and set up. In combination with the droplet applicator and an algorithm for the approximation of the droplet trajectory, this enables the prediction of the droplet impact site. The prediction error of both laryngoscopic systems is evaluated in a laboratory setting. A value of (0.9 0.6)mm is measured using a rod lens-based system; a fiber-based optics yields a value of (1.3 0.8)mm. Finally, a method for the automatic analysis of MIT-LAR sequences is developed and tested on a data set. This leads to the first computer-assisted measurement of the angular velocity of the vocal folds during the adduction phase of the human LAR. When complete/incomplete adduction is achieved, values of (891 516) ° s−1 and (421 221) ° s−1 are obtained, respectively. This constitutes an expansion of the state of medical knowledg

    An actuated larynx phantom for pre-clinical evaluation of droplet-based reflex-stimulating laryngoscopes

    Get PDF
    The laryngeal adductor reflex (LAR) is an important protective function of the larynx to prevent aspiration and potentially fatal aspiration pneumonia by rapidly closing the glottis. Recently, a novel method for targeted stimulation and evaluation of the LAR has been proposed to enable non-invasive and reproducible LAR performance grading and to extend the understanding of this reflexive mechanism. The method relies on the laryngoscopically controlled application of accelerated water droplets in association with a high-speed camera system for LAR stimulation site and reflex onset latency identification. Prototype laryngoscopes destined for this method require validation prior to extensive clinical trials. Furthermore, demonstrations using a realistic phantom could increase patient compliance in future clinical settings. For these purposes, a model of the human larynx including vocal fold actuation for LAR simulation was developed in this work. The combination of image processing based on a custom algorithm and individual motorization of each vocal fold enables spatio-temporal droplet impact detection and controlled vocal fold adduction. To simulate different LAR pathologies, the current implementation allows to individually adjust the reflex onset latency of the ipsi- and contralateral vocal fold with respect to the automatically detected impact location of the droplet as well as the maximum adduction angle of each vocal fold. An experimental study of the temporal offset between desired and observed LAR onset latency due to image processing was performed for three average droplet masses based on highspeed recordings of the phantom. Median offsets of 100, 120 and 128 ms were found (n=16). This offset most likely has a multifactorial cause (image processing delay, inertia of the mechanical components, droplet motion). The observed offset increased with increasing droplet mass, as fluid oscillations after impact may have been detected as motion. In future work, alternative methods for droplet impact detection could be explored and the observed offset could be used for compensation of this undesirable delay

    An actuated larynx phantom for pre-clinical evaluation of droplet-based reflex-stimulating laryngoscopes

    No full text
    The laryngeal adductor reflex (LAR) is an important protective function of the larynx to prevent aspiration and potentially fatal aspiration pneumonia by rapidly closing the glottis. Recently, a novel method for targeted stimulation and evaluation of the LAR has been proposed to enable non-invasive and reproducible LAR performance grading and to extend the understanding of this reflexive mechanism. The method relies on the laryngoscopically controlled application of accelerated water droplets in association with a high-speed camera system for LAR stimulation site and reflex onset latency identification. Prototype laryngoscopes destined for this method require validation prior to extensive clinical trials. Furthermore, demonstrations using a realistic phantom could increase patient compliance in future clinical settings. For these purposes, a model of the human larynx including vocal fold actuation for LAR simulation was developed in this work. The combination of image processing based on a custom algorithm and individual motorization of each vocal fold enables spatio-temporal droplet impact detection and controlled vocal fold adduction. To simulate different LAR pathologies, the current implementation allows to individually adjust the reflex onset latency of the ipsi- and contralateral vocal fold with respect to the automatically detected impact location of the droplet as well as the maximum adduction angle of each vocal fold. An experimental study of the temporal offset between desired and observed LAR onset latency due to image processing was performed for three average droplet masses based on highspeed recordings of the phantom. Median offsets of 100, 120 and 128 ms were found (n=16). This offset most likely has a multifactorial cause (image processing delay, inertia of the mechanical components, droplet motion). The observed offset increased with increasing droplet mass, as fluid oscillations after impact may have been detected as motion. In future work, alternative methods for droplet impact detection could be explored and the observed offset could be used for compensation of this undesirable delay

    Towards microprocessor-based control of droplet parameters for endoscopic laryngeal adductor reflex triggering

    Get PDF
    The so-called Laryngeal Adductor Reflex (LAR) protects the respiratory tract from particle intrusion by quickly approximating the vocal folds to close the free glottal space. An impaired LAR may be associated with an increased risk of aspiration and other adverse conditions. To evaluate the integrity of the LAR, we recently developed an endoscopic prototype for LAR triggering by shooting accelerated droplets onto a predefined laryngeal target region. We now modified the existing droplet-dispensing system to adapt the fluid system pressure as well as the valve opening time to user-chosen values autonomously. This has been accomplished using a microcontroller board connected to a pressure sensor and a mechatronic syringe pump. For performance validation, we designed a measurement setup capable of tracking the droplet along a vertical trajectory. In addition to the experimental setup, the influence of parameters such as system pressure and valve opening time on the micro-droplet formation is presented. Further development will enable the physician to adjust the droplet momentum by setting a single input value on the microcontroller-based setup, thus further increasing usability of the diagnostic device

    Towards microprocessor-based control of droplet parameters for endoscopic laryngeal adductor reflex triggering

    No full text
    The so-called Laryngeal Adductor Reflex (LAR) protects the respiratory tract from particle intrusion by quickly approximating the vocal folds to close the free glottal space. An impaired LAR may be associated with an increased risk of aspiration and other adverse conditions. To evaluate the integrity of the LAR, we recently developed an endoscopic prototype for LAR triggering by shooting accelerated droplets onto a predefined laryngeal target region. We now modified the existing droplet-dispensing system to adapt the fluid system pressure as well as the valve opening time to user-chosen values autonomously. This has been accomplished using a microcontroller board connected to a pressure sensor and a mechatronic syringe pump. For performance validation, we designed a measurement setup capable of tracking the droplet along a vertical trajectory. In addition to the experimental setup, the influence of parameters such as system pressure and valve opening time on the micro-droplet formation is presented. Further development will enable the physician to adjust the droplet momentum by setting a single input value on the microcontroller-based setup, thus further increasing usability of the diagnostic device
    corecore